具体步骤
1、将采集到的彩色车牌图像转换成灰度图
2、灰度化的图像利用高斯平滑处理后,再对其进行中直滤波
3、使用Sobel算子对图像进行边缘检测
4、对二值化的图像进行腐蚀,膨胀,开运算,闭运算的形态学组合变换
5、对形态学变换后的图像进行轮廓查找,根据车牌的长宽比提取车牌
代码实现
图像灰度化
1
| gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|

高斯平滑,中值滤波处理
1 2
| gaussian = cv2.GaussianBlur(gray, (3, 3), 0, 0, cv2.BORDER_DEFAULT) median = cv2.medianBlur(gaussian, 5)
|


Sobel边缘检测
1
| sobel = cv2.Sobel(median, cv2.CV_8U, 1, 0, ksize = 3)
|

二值化
1
| ret, binary = cv2.threshold(sobel, 170, 255, cv2.THRESH_BINARY)
|

对二值化的图像进行腐蚀,膨胀,开运算,闭运算的形态学组合变换
1 2 3 4 5 6 7 8 9
| element1 = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 1)) element2 = cv2.getStructuringElement(cv2.MORPH_RECT, (8, 6))
dilation = cv2.dilate(binary, element2, iterations = 1)
erosion = cv2.erode(dilation, element1, iterations = 1)
dilation2 = cv2.dilate(erosion, element2,iterations = 3)
|

对形态学变换后的图像进行轮廓查找,根据车牌的长宽比提取车牌
1、查找车牌区域
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
| def findPlateNumberRegion(img): region = [] contours,hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
for i in range(len(contours)): cnt = contours[i] area = cv2.contourArea(cnt)
if (area < 2000): continue
epsilon = 0.001 * cv2.arcLength(cnt,True) approx = cv2.approxPolyDP(cnt, epsilon, True)
rect = cv2.minAreaRect(cnt) print "rect is: " print rect
box = cv2.cv.BoxPoints(rect) box = np.int0(box)
height = abs(box[0][1] - box[2][1]) width = abs(box[0][0] - box[2][0])
ratio =float(width) / float(height) if (ratio > 5 or ratio < 2): continue
region.append(box)
return region
|
2、用绿线绘出车牌区域和切割车牌
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
| for box in region: cv2.drawContours(img, [box], 0, (0, 255, 0), 2) ys = [box[0, 1], box[1, 1], box[2, 1], box[3, 1]] xs = [box[0, 0], box[1, 0], box[2, 0], box[3, 0]] ys_sorted_index = np.argsort(ys) xs_sorted_index = np.argsort(xs)
x1 = box[xs_sorted_index[0], 0] x2 = box[xs_sorted_index[3], 0]
y1 = box[ys_sorted_index[0], 1] y2 = box[ys_sorted_index[3], 1]
img_org2 = img.copy() img_plate = img_org2[y1:y2, x1:x2]
|


代码地址在:https://github.com/hyzhangyong/platenumber
总结
这并不完善,并不能识别所有环境下的车牌,需要进一步改善识别模式。